Based on K. H. Rosen: Discrete Mathematics and its Applications.

Lecture 9: Functions. One-to-one and onto functions. Section 2.3

1 Functions. One-to-one and onto functions

Definition 1. Let *A* and *B* be nonempty sets. A **function** *f* from *A* to *B* is an assignment of **exactly one element** of *B* to each element of *A*. We write f(a) = b if *b* is the unique element of *B* assigned by the function *f* to the element *a* of *A*. If *f* is a function from *A* to *B*, we write $f: A \to B$. The set *A* is the domain of *f*.

Definition 2. A function f is said to be **one-to-one**, or an injunction, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be **injective** if it is one-to-one.

Definition 3. A function f from A to B is called **onto**, or a surjection, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function f is called **surjective** if it is onto.

Definition 4. The function f is a one-to-one correspondence, or a **bijection**, if it is both one-to-one and onto. We also say that such a function is **bijective**.

Example 5. Let A be a set. The identity function on A is the function $\iota_A : A \to A$, where $\iota_A(x) = x$ for all $x \in A$. In other words, the identity function ι_A is the function that assigns each element to itself. The function ι_A is one-to-one and onto, so it is a bijection.

Example 6. Consider $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$. The function $f: A \to B$ defined as

f(1) = a, f(2) = b and f(3) = c,

is injective but not surjective. The element d is not in the image or the range of f. On the hand, if we take $g: A \to B$ given by

$$g(1) = a$$
, $g(2) = a$ and $g(3) = c$,

is neither injective, not surjective since now two different elements in the domain hit the same element in the range g(1) = g(2) = a. To obtain a bijective function, we need to change to co-domain B, for example, the function $h: \{1, 2, 3\} \rightarrow \{a, b, c\}$ defined by

h(1) = a, h(2) = b and h(3) = c,

is both injective and surjective.

Example 7. Consider the rule $f(x) = x^2$ in three different functions

 $f_1: \mathbb{R} \to \mathbb{R}, \qquad f_2: \mathbb{R} \to [0, \infty) \quad \text{and} \quad f_3: [0, \infty) \to [0, \infty).$

The function f_1 is neither injective nor surjective, since $f_1(1) = f_1(-1) = 1$ and at the same time negative numbers are not in the range of f_1 . The function f_2 is still not injective because $f_2(-1) = f_2(1) = 1$ but now it is surjective, every element in $[0, \infty)$ is in the range of f_2 . The function f_3 is both injective and surjective.

Definition 8. Let f be a function from the set A to the set B. The graph Γ_f of the function f is the set of ordered pairs

$$\{(a,b) \mid b = f(a)\}.$$

The graph of a function $f: A \to B$ is a subset of $A \times B$.

1.1 Some important functions

Definition 9. The floor function assigns to the real number x the largest integer that is less than or equal to x. The value of the floor function at x is denoted by $\lfloor x \rfloor$. The **ceiling function** assigns to the real number x the smallest integer that is greater than or equal to x. The value of the ceiling function at x is denoted by $\lceil x \rceil$.

Remark 10. Suppose that x, y are real numbers, we have

$$\lfloor x \rfloor + \lfloor y \rfloor \leq \lfloor x + y \rfloor \leq x + y$$

Observe that it is always true that $\lfloor x \rfloor \leq x$ and $\lfloor y \rfloor \leq y$. Hence $\lfloor x \rfloor + \lfloor y \rfloor$ is an integer and

$$\lfloor x \rfloor + \lfloor y \rfloor \le x + y$$

By the definition of the floor function, it must be the case that

$$\lfloor x \rfloor + \lfloor y \rfloor \le \lfloor x + y \rfloor \le x + y.$$