Based on K. H. Rosen: Discrete Mathematics and its Applications.
Lecture 9: Functions. One-to-one and onto functions. Section 2.3

1 Functions. One-to-one and onto functions

Definition 1. Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write $f(a)=b$ if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write $f: A \rightarrow B$. The set A is the domain of f.

Definition 2. A function f is said to be one-to-one, or an injunction, if and only if $f(a)=f(b)$ implies that $a=b$ for all a and b in the domain of f. A function is said to be injective if it is one-to-one.

Definition 3. A function f from A to B is called onto, or a surjection, if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a)=b$. A function f is called surjective if it is onto.

Definition 4. The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto. We also say that such a function is bijective.

Example 5. Let A be a set. The identity function on A is the function $\iota_{A}: A \rightarrow A$, where $\iota_{A}(x)=x$ for all $x \in A$. In other words, the identity function ι_{A} is the function that assigns each element to itself. The function ι_{A} is one-to-one and onto, so it is a bijection.

Example 6. Consider $A=\{1,2,3\}$ and $B=\{a, b, c, d\}$. The function $f: A \rightarrow B$ defined as

$$
f(1)=a, \quad f(2)=b \quad \text { and } \quad f(3)=c,
$$

is injective but not surjective. The element d is not in the image or the range of f. On the hand, if we take $g: A \rightarrow B$ given by

$$
g(1)=a, \quad g(2)=a \quad \text { and } \quad g(3)=c,
$$

is neither injective, not surjective since now two different elements in the domain hit the same element in the range $g(1)=g(2)=a$. To obtain a bijective function, we need to change to co-domain B, for example, the function $h:\{1,2,3\} \rightarrow\{a, b, c\}$ defined by

$$
h(1)=a, \quad h(2)=b \quad \text { and } \quad h(3)=c,
$$

is both injective and surjective.

Example 7. Consider the rule $f(x)=x^{2}$ in three different functions

$$
f_{1}: \mathbb{R} \rightarrow \mathbb{R}, \quad f_{2}: \mathbb{R} \rightarrow[0, \infty) \quad \text { and } \quad f_{3}:[0, \infty) \rightarrow[0, \infty) .
$$

The function f_{1} is neither injective nor surjective, since $f_{1}(1)=f_{1}(-1)=1$ and at the same time negative numbers are not in the range of f_{1}. The function f_{2} is still not injective because $f_{2}(-1)=f_{2}(1)=1$ but now it is surjective, every element in $[0, \infty)$ is in the range of f_{2}. The function f_{3} is both injective and surjective.

Definition 8. Let f be a function from the set A to the set B. The graph Γ_{f} of the function f is the set of ordered pairs

$$
\{(a, b) \mid b=f(a)\}
$$

The graph of a function $f: A \rightarrow B$ is a subset of $A \times B$.

1.1 Some important functions

Definition 9. The floor function assigns to the real number x the largest integer that is less than or equal to x. The value of the floor function at x is denoted by $\lfloor x\rfloor$. The ceiling function assigns to the real number x the smallest integer that is greater than or equal to x. The value of the ceiling function at x is denoted by $\lceil x\rceil$.

Remark 10. Suppose that x, y are real numbers, we have

$$
\lfloor x\rfloor+\lfloor y\rfloor \leq\lfloor x+y\rfloor \leq x+y .
$$

Observe that it is always true that $\lfloor x\rfloor \leq x$ and $\lfloor y\rfloor \leq y$. Hence $\lfloor x\rfloor+\lfloor y\rfloor$ is an integer and

$$
\lfloor x\rfloor+\lfloor y\rfloor \leq x+y .
$$

By the definition of the floor function, it must be the case that

$$
\lfloor x\rfloor+\lfloor y\rfloor \leq\lfloor x+y\rfloor \leq x+y .
$$

